Synthesis of 1,2,4-Oxadiazole-, 1,3,4-Oxadiazole-, and **1,2,4-Triazole-Derived Dipeptidomimetics**

Susanna Borg,[†] Geneviève Estenne-Bouhtou,[†] Kristina Luthman,^{*,†} Ingeborg Csöregh,[‡] Willy Hesselink,[§] and Uli Hacksell[†]

Department of Organic Pharmaceutical Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, S-751 23 Uppsala, Sweden, Department of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and J. T. Baker B. V., Rijsterborgherweg 20, P.O. Box 1, 7400 AA Deventer, Holland

Received December 20, 1994[®]

Three series of heterocyclic dipeptidomimetics have been synthesized. The compounds were designed as amino acid-glycine mimetics containing 1,2,4-oxadiazole, 1,3,4-oxadiazole, and 1,2,4triazole ring systems, useful as building blocks in the synthesis of modified peptides. The heterocyclic moieties were chosen according to their geometrical, electrostatical, and hydrogenbonding properties together with the synthetic accessibility. The syntheses started with Bocprotected L-amino acids (Ala, Gly, Asp, Phe, Ser, Arg, Cys, and Pro), and the reaction conditions were chosen to allow for the formation of products with high enantiopurity. The enantiomeric excess was determined by HPLC using chiral stationary phases.

Introduction

Peptide bonds and peptide fragments have been replaced with a wide variety of structural moieties¹ in attempts to convert peptides into chemically stable and orally available molecules. Recently, reports on the use of heterocyclic rings in peptidomimetics have appeared in the literature.²⁻⁵ To the best of our knowledge, 1,2,4oxadiazole and 1,3,4-oxadiazole moieties have not been used in the construction of peptide mimics despite their frequent use as ester and amide bioisosteres.^{6,7} We find these ring systems as well as the 1,2,4-triazole moiety^{8,9} attractive for the synthesis of X-Gly dipeptidomimetics because (i) retrosynthetically, they may be derived in optically active form from appropriately protected and activated natural or unnatural amino acids, (ii) they form dipeptidomimetics with adequate geometrical and electrostatical properties,¹⁰ and (iii) they possess certain properties which make them potentially useful in estab-

(2) For imidazoline, see: (a) Jones, R. C. F.; Ward, G. J. Tetrahedron Lett. 1988, 29, 3853-3856. (b) Gilbert, I.; Rees, D. C.; Richardson, R. S. Tetrahedron Lett. 1991, 32, 2277-2280.

(3) For 2-isoxazoline, see: Kim, B. H.; Chung, Y. J.; Keum, G.; Kim, J.; Kim, K. Tetrahedron Lett. **1992**, *33*, 6811–6814.

(4) For oxazoline and thiazoline, see: Galéotti, N.; Montagne, C.; Poncet, J.; Jouin, P. Tetrahedron Lett. 1992, 33, 2807-2810.

roncet, J.; Jouin, F. 1etratearon Lett. 1992, 33, 2807–2810.
(5) For thiazole, imidazole, and oxazole, see: (a) Gordon, T.; Hansen,
P.; Morgan, B.; Singh, J.; Baizman, E.; Ward, S. Bioorg. Med. Chem.
Lett. 1993, 3, 915–920. (b) Gordon, T. D.; Singh, J.; Hansen, P. E.;
Morgan, B. A. Tetrahedron Lett. 1993, 34, 1901–1904. (c) Thompson,
S. K.; Murthy, K. H. M.; Zhao, B.; Winborne, E.; Green, D. W.; Fisher,
S. M.; DesJarlais, R. L.; Tomaszek, T. A., Jr.; Meek, T. D.; Gleason, J.
G.: Abdel-Memid S. S. J. Med. Chem. 1004, 27, 2107. G.; Abdel-Meguid, S. S. J. Med. Chem. 1994, 37, 3100-3107.

lishing key intermolecular features in interactions between peptides and biological targets; whereas all three ring systems can act as hydrogen bond acceptors, only the 1,2,4-triazole moiety is able to donate a hydrogen bond.

In an initial study, we failed to obtain optically active 1,2,4-oxadiazole derivatives using Boc-L-phenylalanine as the starting material.¹¹ Most likely, the strong basic

[†] Uppsala University.

[‡] Stockholm University.

[§] J. T. Baker B. V.

[®] Abstract published in Advance ACS Abstracts, May 1, 1995.

<sup>Abstract published in Advance ACS Abstracts, May 1, 1995.
(1) (a) Spatola, A. F. In Chemistry and Biochemistry of Amino Acids,</sup> Peptides and Proteins; Weinstein, B., Ed.; Marcel Dekker: New York, 1983; Vol. VII, pp 267-357. (b) Rich, D. H. In Comprehensive Medicinal Chemistry; Hansch, C., Sammes, P. G., Taylor, J. B., Eds.; Pergamon Press: Oxford, 1989; Vol. 2, pp 391-441. (c) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. Engl. 1993, 32, 1244-1267. (d) Chorev, M.; Goodman, M. Acc. Chem. Res. 1993, 26, 266-273. (e) Olson, G. L.; Bolin, D. R.; Bonner, M. P.; Bös, M.; Cook, C. M.; Fry, D. C.; Graves, B. J.; Hatada, M.; Hill, D. E.; Kahn, M.; Madison, V. S.; Rusiecki, V. K.; Sarabu, R.; Sepinwall, J.; Vincent, G. P.; Voss, M. E. J. Med. Chem. 1993, 36, 3039-3049. (f) Liskamp, R. M. J. Recl. Trav. Chim. Pays-Bas 1994, 113, 1-19. (g) Adang, A. E. P.; Hermkens, P. H. H.; Linders, J. T. M.; Ottenheijm, H. C. J.; van Staveren, C. J. Recl. Trav. Chim. Pays-Bas 1994, 113, 63-78. (2) For imidazoline, see: (a) Jones, R. C. F.; Ward, G. J. Tetrahedron

^{(6) 1,2,4-}Oxadiazoles as ester and amide isosteres: (a) Saunders, (6) 1,2,4-Oxadiazoles as ester and amide isosteres: (a) Saunders, J.; MacLeod, A. M.; Merchant, K.; Showell, G. A.; Snow, R. J.; Street, L. J.; Baker, R. J. Chem. Soc., Chem. Commun. 1988, 1618-1619. (b) Crimmin, M. J.; O'Hanlon, P. J.; Rogers, N. H.; Walker, G. J. Chem. Soc., Perkin Trans. 1 1989, 2047-2056. (c) Watjen, F.; Baker, R.; Engelstoff, M.; Herbert, R.; MacLeod, A.; Knight, A.; Merchant, K.; Moseley, J.; Saunders, J.; Swain, C. J.; Wong, E.; Springer, J. P. J. Med. Chem. 1989, 32, 2282-2291. (d) Saunders, J.; Cassidy, M.; Freedman, S. B.; Harley, E. A.; Iversen, L. L.; Kneen, C.; MacLeod, 33, 1128-1138. (e) Street, L. J.; Baker, R. : Book, T.; Kneen, C. O.; M.; Merchant, K. J.; Snow, R. J.; Baker, R. J. Med., Chem. 1990, 33, 1128-1138. (e) Street, L. J.; Baker, R.; Book, T.; Kneen, C. O.; MacLeod, A. M.; Merchant, K. J.; Showell, G. A.; Saunders, J.; Herbert, R. H.; Freedman, S. B.; Harley, E. A. J. Med. Chem. 1990, 33, 2690-2697. (f) Swain, C. J.; Baker, R.; Kneen, C.; Moseley, J.; Saunders, J.; Seward, E. M.; Stevenson, G.; Beer, M.; Stanton, J.; Watling, K. J. Med. Chem. 1991, 34, 140-151. (g) Sauerberg, P.; Kindtler, J. W.; Nielsen, L.; Sheardown, M. J.; Honoré, T. J. Med. Chem. 1991, 34, 687-692. (h) Showell, G. A.; Gibbons, T. L.; Kneen, C. O.; MacLeod, A. M.; Merchant, K.; Saunders, J.; Freedman, S. B.; Patel, S.; Baker, R. J. Med. Chem. 1991, 34, 1086-1094. (i) Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. J. Med. Chem. 1991, 34, 2060-2067. (j) Orlek, B. S.; Blaney, F. E.; Brown, F.; Clark, M. S. G.; Hadley, M. S.; Hatcher, J.; Riley, G. J.; Rosenberg, H. E.; Wadsworth, H. J.; Wyman, P. J. Med. Chem. 1991, 34, 2726-2735. (k) Showell, G. A.; Baker, R.; Davis, J.; Hargreaves, R.; Freedman, S. B.; Hoogsteen, K.; Baker, R.; Davis, J.; Hargreaves, R.; Freedman, S. B.; Hoogsteen, K. Patel, S.; Snow, R. J. J. Med. Chem. 1992, 35, 911-916. (1) Carroll, F. Patel, S.; Snow, R. J. J. Med. Chem. 1992, 35, 911-916. (1) Carroll, F.
I.; Abraham, P.; Kuzemko, M. A.; Gray, J. L.; Lewin, A. H.; Boja, J.
W.; Kuhar, M. J. J. Chem. Soc., Chem. Commun. 1993, 44-46. (m)
Dunbar, P. G.; Durant, G. J.; Fang, Z.; Abuh, Y. F.; El-Assadi, A. A.;
Ngur, D. O.; Periyasamy, S.; Hoss, W. P.; Messer, W. S., Jr. J. Med.
Chem. 1993, 36, 842-847. (n) Street, L. J.; Baker, R.; Castro, J. L.;
Chambers, M. S.; Guiblin, A. R.; Hobbs, S. C.; Matassa, V. G.; Reeve,
A. J.; Beer, M. S.; Middlemiss, D. N.; Noble, A. J.; Stanton, J. A.;
Scholey, K.; Hargreaves, R. J. J. Med. Chem. 1993, 36, 1529-1538.
(o) Carroll, F. I.; Gray, J. L.; Abraham, P.; Kuzemko, M. A.; Lewin, A.
H.; Boia, J. W.; Kuhar, M. J. J. Med. Chem. 1993, 62, 2886-2809. (p) H.; Boja, J. W.; Kuhar, M. J. J. Med. Chem. 1993, 36, 2886-2890. (p) H.; Boja, J. W.; Kunar, M. J. J. Med. Chem. 1993, 36, 2880–2890. (p)
 Andersen, K. E.; Jørgensen, A. S.; Bræstrup, C. Eur. J. Med. Chem.
 1994, 29, 393–399. (q) Boyd, S. A.; Fung, A. K. L.; Baker, W. R.;
 Mantei, R. A.; Stein, H. H.; Cohen, J.; Barlow, J. L.; Klinghofer, V.;
 Wessale, J. L.; Verburg, K. M.; Polakowski, J. S.; Adler, A. L.;
 Calzadilla, S. V.; Kovar, P.; Yao, Z.; Hutchins, C. W.; Denissen, J. F.;
 Grabowski, B. A.; Cepa, S.; Hoffman, D. J.; Garren, K. W.; Kleinert,
 H. D. J. Med. Chem. 1994, 37, 2991–3007

<sup>H. D. J. Med. Chem. 1994, 37, 2991-3007.
(7) 1,3,4-Oxadiazoles as ester and amide isosteres: (a) Adelstein,
G. W. J. Med. Chem. 1973, 16, 309-312. (b) Adelstein, G. W.; Yen, C.
H.; Dajani, E. Z.; Bianchi, R. G. J. Med. Chem. 1976, 19, 1221-1225.</sup> See also refs 6b, 6d, 6f, 6i, and 6j.

conditions used in the cyclization reaction (NaH or BuLi in THF) promoted the formation of achiral tautomeric forms.¹² We now report the facile synthesis of a range of optically active amino acid-Gly mimetics using milder conditions.¹³ The 1,2,4-oxadiazole derivatives are obtained from activated α -amino acids and an amidoxime in a one-pot reaction in pyridine without the use of any strong base to promote the cyclization. In the synthesis of the 1,3,4-oxadiazole derivatives, mild dehydrating conditions are used in the cyclization step, whereas the 1,2,4-triazole derivatives are obtained by thermal dehydration. The compounds described herein constitute a set of potentially useful building blocks in the synthesis of modified peptides.¹⁴

(8) Triazoles as amide isosteres: (a) Wadsworth, H. J.; Jenkins, S. M.; Orlek, B. S.; Cassidy, F.; Clark, M. S. G.; Brown, F.; Riley, G. J.; Graves, D.; Hawkins, J.; Naylor, C. B. J. Med. Chem. 1992, 35, 1280–1290. (b) Jenkins, S. M.; Wadsworth, H. J.; Bromidge, S.; Orlek, B. S.; Wyman, P. A.; Riley, G. J.; Hawkins, J. J. Med. Chem. 1992, 35, 2392–2406. (c) Burrell, G.; Evans, J. M.; Hadley, M. S.; Hicks, F.; Stemp, G. Bioorg. Med. Chem. Lett. 1994, 4, 1285–1290. See also ref 6i.

Bloorg. Med. Chem. Lett. 1994, 4, 1200–1200. See also rel of. (9) 1,2,4-Triazoles as amide bond replacements in peptides: Thompson, S. K.; Eppley, A. M.; Frazee, J. S.; Darcy, M. G.; Lum, R. T.; Tomaszek, T. A., Jr.; Ivanoff, L. A.; Morris, J. F.; Sternberg, E. J.; Lambert, D. M.; Fernandez, A. V.; Petteway, S. R., Jr.; Meek, T. D.; Metcalf, B. W.; Gleason, J. G. Bioorg. Med. Chem. Lett. 1994, 4, 2441– 2446. See also ref 6q.

(10) Electrostatic *iso*-potential maps based on AM1-generated atomic charges were compared using similar conformations of the different species.

(11) Borg, S.; Luthman, K.; Nyberg, F.; Terenius, L.; Hacksell, U. *Eur. J. Med. Chem.* **1993**, *28*, 801–810.

(12) For tautomerism of heterocycles, see: Elguero, J.; Marzia, C.; Katritzky, A. R.; Linda, P. In *Advances in Heterocyclic Chemistry*; Academic Press: New York, 1976; Supplement 1: The Tautomerism of Heterocycles.

(13) (a) Azabicyclo-1,2,4-oxadiazole derivatives have been synthesized stereoselectively; see ref 6e, 6l, and 6o. (b) For the separation of azabicyclo[1,2,4]oxadiazole isomers on HPLC, see: Barnaby, R. J.; MacLeod, A. M. J. Liq. Chromatogr. **1991**, 14, 287-295. (c) 4-Amino-1,2,4-triazoles have been synthesized from a-amino acids in low % ee (around 30%); see: Matínez-Díaz, M. V.; de Mendoza, J.; Santos, F.; Torres, T. Tetrahedron: Asymmetry **1994**, 5, 1291-1296.

(around 35%), see: Mather-Dhr, M. Y.; de Mendoza, J.; Santos, F.;
Torres, T. Tetrahedron: Asymmetry 1994, 5, 1291-1296.
(14) (a) Cox, M. T.; Gormley, J. J.; Hayward, C. F.; Petter, N. N. J.
Chem. Soc., Chem. Commun. 1980, 800-802. (b) Allmendinger, T.;
Felder, E.; Hungerbühler, E. Tetrahedron Lett. 1990, 31, 7301-7304.
(c) Jenmalm, A.; Luthman, K.; Lindeberg, G.; Nyberg, F.; Terenius, L.; Hacksell, U. Bioorg. Med. Chem. Lett. 1992, 2, 1693-1698. (d) Jaspers, H.; Tourwé, D.; van Binst, G.; Pepermans, H.; Borea, P.; Ucelli, L.; Salvadori, S. Int. J. Pept. Protein Res. 1992, 39, 315-321. See also refs 2a, 2b, 4, 5a, and 9.

Results and Discussion

Synthesis. Three series of heterocyclic derivatives were synthesized from Boc-protected L-amino acids. The synthetic routes to afford the heterocycles were applied on appropriately protected lipophilic (glycine, alanine, phenylalanine, and proline), polar (cysteine and serine), acidic (aspartate), and basic (arginine) amino acids. The enantiomeric purities were determined by HPLC using a chiral stationary phase. All eight amino acids were used in the synthesis of the 1.2.4-oxadiazoles. In the case of the 1,3,4-oxadiazoles and the 1,2,4-triazoles, neither aspartate nor arginine was used as starting material.¹⁵ Aspartate was not suitable because of the reactivity of the ester functionality in the side chain, and arginine was avoided because of the difficulties we experienced in optimizing the reaction conditions in the 1,2,4-oxadiazole synthesis. The physical data of the synthesized heterocyclic derivatives are presented in Table 1.

1,2,4-Oxadiazoles¹⁶ are most commonly synthesized from amidoximes and acetylating agents such as carboxylic acid chlorides or anhydrides.¹⁷⁻¹⁹ In this study, we treated symmetrical anhydrides of the different Bocprotected L-amino acids²⁰ with an amidoxime in pyridine in a one-pot reaction (Scheme 1). The cyclization took place when the reaction mixture was heated to reflux. The O-acylamidoxime intermediate did not need to be isolated, nor was a dehydrating agent required. The 1,2,4-oxadiazole derivatives were obtained in 20-81% yield. In the synthesis of the aspartate derivative, **8a**. two different methods were used to activate the carboxylic acid function; in addition to the symmetrical anhydride, also the Boc-L-Asp(Bn)-nitrophenyl ester was used as starting material. The yields in the two reactions were similar (66 and 58%, respectively), but differences in optical rotations and melting points suggested that the stereoselectivity of the two routes differed, the use of the symmetrical anhydride providing a product with higher optical purity (Table 1).

(17) For examples of 1,2,4-oxadiazoles derived from amidoximes and carboxylic acid chlorides or carboxylic acid anhydrides, see: (a) Hellmann, H.; Piechota, H.; Schwiersch, W. Chem. Ber. 1961, 94, 757-761. (b) Eloy, F.; Lenaers, R. Helv. Chim. Acta 1966, 49, 1430-1432. (c) Paudler, W. W.; Kuder, J. E. J. Org. Chem. 1967, 32, 2430-2433. (d) Yurugi, S.; Miyake, A.; Fushimi, T.; Imamiya, E.; Matsumura, H.; Imai, Y. Chem. Pharm. Bull. 1973, 21, 1641-1650. (e) Yurugi, S.; Miyake, A.; Fushimi, T.; Imamiya, E.; Matsumura, H.; Imai, Y. Chem. Pharm. Bull. 1973, 21, 1641-1650. (e) Yurugi, S.; Miyake, A.; Tomimoto, M.; Matsumura, H.; Imai, Y. Chem. Pharm. Bull. 1973, 21, 1885-1893. (f) Marquez, V. E.; DiParsia, M. T.; Kelley, J. A. J. Heterocycl. Chem. 1977, 14, 1427-1429. (g) Chiou, S.; Shine, H. J. J. Heterocycl. Chem. 1989, 26, 125-128. (h) Goddard, C. J. J. Heterocycl. Chem. 1991, 28, 17-28. (i) Unangst, P. C.; Shrum, G. P.; Connor, D. T.; Dyer, R. D.; Schrier, D. J. J. Med. Chem. 1992, 35, 3691-3698. See also refs 6c, 6d, 6g, 6j, 6l, 6o, and 6p.

(18) For other methods for synthesizing 1,2,4-oxadiazole-3-carboxylic acid esters, see: (a) Brachwitz, H. J. Prakt. Chem. 1972, 314, 447–454. (b) Brachwitz, H. J. Prakt. Chem. 1972, 314, 455–460. (c) Verček, B.; Leban, I.; Stanovik, B.; Tišler, M. J. Org. Chem. 1979, 44, 1695–1699. (d) Shimizu, T.; Hayashi, Y.; Teramura, K. Bull. Chem. Soc. Jpn. 1985, 58, 2519–2522.

(19) For examples of other synthetic routes providing 1,2,4-oxadiazoles, see: (a) Polo, J.; Chow, Y. L. Heterocycles 1978, 11, 101– 104. (b) Lin, Y.-I.; Lang, S. A., Jr.; Lovell, M. F.; Perkinson, N. A. J. Org. Chem. 1979, 44, 4160-4164. (c) Steglich, W.; van Ree, T. Synth. Commun. 1982, 12, 457-461. (d) Yarovenko, V. N.; Taralashvili, V. K.; Zavarzin, I. V.; Krayushkin, M. M. Tetrahedron 1990, 46, 3941-3952. See also refs 6a, 6e, 6i, and 6j.

(20) For chemical activation of amino acid residues, see: Jones, J. In *The Chemical Synthesis of Peptides*; Oxford University Press: New York, 1991; pp 42-75.

⁽¹⁵⁾ For a review about side reactions in peptide synthesis, see: Bodanszky, M.; Martinez, J. Synthesis 1981, 333-356.

⁽¹⁶⁾ For reviews about 1,2,4-oxadiazoles, see: (a) Behr, L. C. In The Chemistry of Heterocyclic Compounds; Weissberger, A., Ed.; Wiley: New York, 1962; Vol. 17, pp 245-262. (b) Eloy, F. Fortschr. Chem. Forsch. 1965, 4, 807-876. (c) Clapp, L. B. Adv. Heterocycl. Chem. 1976, 20, 65-116. (d) Clapp, L. B. In Comprehensive Heterocyclic Chemistry; Potts, K. T., Ed.; Pergamon Press: Oxford, 1984; Vol. 6, pp 365-392.

Table 1. Physical Data of the Novel Dipeptidomimetics 2a-9a, 2d-7d, and 2f-7f

compd	yield ^a (%)	mp (°C)	[α] _D	$t_{ m R}({ m min})^b$	% ee	formula ^c
2a	72	$75 - 76^{d}$	-29.4^{e}	$17.2/19.5^{f,g}$	93	$C_{18}H_{23}N_3O_5$
2d	30	$122 - 123^{h}$	-31.9 ^e	45.7/42.5 ^{i,g}	>95	$C_{18}H_{23}N_3O_5 \cdot 1/_4H_2O$
2f	52	$154 - 154.5^{h}$	-22.8^{j}	$11.6/8.2^{k,l}$	>95	$C_{18}H_{24}N_4O_4 \cdot 1/_4H_2O$
3a	63	$81 - 82^{m}$	-	-		$C_{11}H_{17}N_3O_5 \cdot 1/_8H_2O$
3d	17	$62-64^{m}$		_	_	$C_{11}H_{17}N_{3}O_{5}$
3f	28	$156 - 157^{n}$	_	_	_	$C_{11}H_{18}N_4O_4 \cdot \frac{1}{2}H_2O$
4a	76	$73 - 74^{h}$	-51.0^{i}	14.6/16.8 ^{f,g}	>95	$C_{12}H_{19}N_{3}O_{5}$
4d	17	$66-67^{h}$	-43.5^{j}	21.8 ^{f,g} /ND ^o	>95	$C_{12}H_{19}N_{3}O_{5} \cdot 1/_{4}H_{2}O$
4f	39	$97 - 98^{p}$	-92.6^{j}	$16.7^{f,q}/\mathrm{ND}^o$	>95	$C_{12}H_{20}N_4O_4\cdot 1/_2H_2O$
5a	81	$115 - 116^{r}$	-29.8^{s}	ND ^o	ND^{o}	$C_{19}H_{25}N_{3}O_{5}S$
5d	6	$74.5 - 75.5^d$	-21.2^{t}	ND ^o	ND^{o}	$C_{19}H_{25}N_3O_5S^{u}$
5 f	13	$181 - 182^{p}$	-28.8^{v}	ND°	ND^{o}	$C_{19}H_{26}N_4O_4S^{1/4}H_2O$
6a	54	oil	-16.1 ^j	23.5/22.2 ^{f,g}	72	$C_{19}H_{25}N_{3}O_{6}$
6d	20	$84 - 86^{h}$	-32.8^{j}	ND^{o}	ND^{o}	$C_{19}H_{25}N_{3}O_{6} \cdot \frac{1}{4}H_{2}O$
6f	15	$153 - 153.5^{w}$	-22.8^{x}	20.8 ^{y,q} /ND ^o	>95	$C_{19}H_{26}N_4O_5$
7a	38	oil	-62.7^{v}	17.3 ^{f,g} /ND ^o	>95	$C_{14}H_{21}N_{3}O_{5}z$
7d	6	oil	-60.8^{i}	25.3 ^{f.g} /ND ^o	>95	$C_{14}H_{21}N_{3}O_{5}^{aa}$
7f	26	$131 - 134^{n}$	-199.3 ^j	24.7 ^{f,q} /ND ^o	>95	$C_{14}H_{22}N_4O_4$
$8a^{bb}$	66	$118.5 - 119.5^{m}$	-38.4^{e}	$20.8/22.1^{y,g}$	>95	$C_{20}H_{25}N_3O_7$
$8a^{cc}$	58	$105 - 106^{m}$	-8.7^{e}		20	20200
9a	20	$120 - 121^{dd}$	-14.7^{j}	$20.0^{f.g}/\text{ND}^o$	>95	$C_{25}H_{42}N_6O_9 \cdot 1/_2H_2O$

^a Overall yield calculated from Boc-protected L-amino acid. ^b $t_{\rm R}$ for both enantiomers, if determined, given as L/D. ^c Except when noted, the compounds gave elemental analyses for C, H, and N (see supplementary material) within 0.4% of the theoretical values. ^d Recrystallized from Et₂O/hexane. ^e c 1.0, MeOH. ^f Hexane/2-propanol/Et₂NH (90:10:0.1), 0.5 mL/min. ^g Analysis run at ambient temperature. ^h Recrystallized from CH₂Cl₂/pentane. ⁱ Hexane/2-propanol/Et₂NH (95:5:0.1), 0.5 mL/min. ^j c 1.0, CHCl₃. ^k Hexane/2-propanol/Et₂NH (90:10:0.1), 1.0 mL/min. ^l Analysis run at 35 °C. ^m Recrystallized from Et₂O/pentane. ⁿ Recrystallized from Et₂O/CHCl₂/pentane. ^o Not determined. ^p Recrystallized from Et₂O/CHCl₃/pentane. ^s c 0.9, MeOH. ^t c 0.3, CHCl₃. ^u N: calcd 10.3, found 9.85. ^v c 1.1, CHCl₃. ^w Recrystallized from Et₂O/MeOH/pentane. ^x c 0.7, CHCl₃. ^y Hexane/2-propanol/Et₂NH (80:20:0.2), 0.5 mL/min. ^z C 1.7, CHCl₃. ^y Hexane/2-propanol/Et₂NH (80:20:0.2), 0.5 mL/min. ^z c 1.1, CHCl₃. ^d Necrystallized from Et₂O/MeOH/pentane. ^x c 0.7, CHCl₃. ^y Hexane/2-propanol/Et₂NH (80:20:0.2), 0.5 mL/min. ^z Characterized by MS. ^{aa} N: calcd 13.5, found 13.0. ^{bb} Boc-L-Aspartic acid anhydride used as starting material. ^{cc} Boc-L-aspartic acid nitrophenyl ester used as starting material. ^{dd} Recrystallized from pentane.

 $^{\alpha}\,$ (a) DCC, CH_2Cl_2, 0 °C; (b) EtOOCC(NOH)NH_2 (1), pyridine, reflux.

1,3,4-Oxadiazoles²¹ are obtained by dehydration of diacylhydrazines.²² In this study, the 1,3,4-oxadiazoles were synthesized via the corresponding Boc-L-amino acid hydrazides (Scheme 2).²³ The amino acids were first esterified²⁴ and then treated with hydrazine hydrate. An exception was Boc-L-Pro which was first activated as a mixed anhydride and then treated with hydrazine hydrate. The resulting hydrazides were treated with ethyl oxalyl chloride to give diacylhydrazines.²⁵ The cyclization conditions had to be mild, and since the derivatives contained acid sensitive Boc groups, the use of acidic dehydrating agents was not possible. Hence, the diacyl-

^a (a) (i) DCC, DMAP, EtOH, Et₂O, rt; (ii) $NH_2NH_2H_2O$, EtOH, rt; (b) ClCOCOOEt, Et₃N, THF, -30 °C to rt; (c) (i) SOCl₂, pyridine, Et₂O, 0 °C; (ii) toluene, reflux.

hydrazines were treated with thionyl chloride and pyridine, giving 1,2,3,4-oxathiadiazole-S-oxide intermediates; the 1,3,4-oxadiazoles were formed by thermal elimination of sulfur dioxide.²⁶⁻²⁹ The overall yields of the 1,3,4-

⁽²¹⁾ For reviews about 1,3,4-oxadiazoles, see: (a) Behr, L. C. In *The Chemistry of Heterocyclic Compounds*; Weissberger, A., Ed.; Wiley: New York, 1962; Vol. 17, pp 263-282. (b) Nesynov, E. P.; Grekov, A. P. *Russ. Chem. Rev. (Engl. Transl.)* **1964**, *33*, 508-514. (c) Hetzheim, A.; Möckel, K. Adv. Heterocyclic Chem. **1966**, *7*, 183-224. (d) Hill, J. In *Comprehensive Heterocyclic Chemistry*; Potts, K. T., Ed.; Pergamon Press: Oxford, 1984; Vol. 6, pp 427-446.

^{A.; Mockel, K. Adv. Heterocycl. Chem. 1996, 7, 183-224. (d) Hill, J. In} Comprehensive Heterocyclic Chemistry; Potts, K. T., Ed.; Pergamon Press: Oxford, 1984; Vol. 6, pp 427-446.
(22) For examples of dehydration of acylhydrazines, see: (a) Stollé, R. Chem. Ber. 1899, 32, 797-798. (b) Cauliez, P.; Couturier, D.; Rigo, B.; Fasseur, D.; Halama, P. J. Heterocycl. Chem. 1993, 30, 921-927 and references therein. (c) Carlsen, P. H. J.; Jørgensen, K. B. J. Heterocycl. Chem. 1994, 31, 805-807.

⁽²³⁾ For general references about amino acid hydrazides, see: (a) Stetzel, P. In Methoden der Organischen Chemie (Houben-Weyl);
Müller, E., Ed.; Georg Thieme Verlag: Stuttgart, 1974; Vol. XV/2, pp 296-322. (b) Rzeszotarska, B.; Nadolska, B.; Tarnawski, J. Liebigs Ann. Chem. 1981, 1294-1302.

⁽²⁴⁾ Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 4475-4478.
(25) Boesch, R. Ger. Pat. 28 08 842, 1978.

⁽²⁶⁾ Golfier, M.; Guillerez, M.-G. Tetrahedron Lett. 1976, 267-270.
(27) For examples of the synthesis of other 1,3,4-oxadiazole-2-carboxylic acid esters, see: (a) Werber, G.; Buccheri, F. Ann. Chim.
(Rome) 1968, 58, 810-822. (b) Werber, G.; Buccheri, F.; Marino, M. L. Ann. Chim. (Rome) 1971, 61, 587-599. (c) Werber, G.; Buccheri, F.; Marino, M. L. Atti Accad. Sci., Lett. Arti Palermo, Parte 1 1971, 30, 189-198. (d) Werber, G.; Buccheri, F.; Noto, R.; Gentile, M. J. Heterocycl. Chem. 1977, 14, 1385-1388. (e) Dost, J.; Heschel, M.; Stein, J. J. Prakt. Chem. 1985, 327, 109-116. See also ref 7b.

⁽²⁸⁾ For examples of 1,3,4-oxadiazoles synthesized from tetrazoles and acid chlorides or anhydrides, see: (a) Heller, G. Chem. Ber. 1907, 40, 114-119. (b) Huisgen, R.; Sauer, J.; Sturm, H. J.; Markgraf, J. H. Chem. Ber. 1960, 93, 2106-2124. (c) Ogilvie, W.; Rank, W. Can. J. Chem. 1987, 65, 166-169. (d) Jursic, B. S.; Zdravskovski, Z. Synth. Commun. 1994, 24, 1575-1582. See also refs 7a, 7b, 17e, 17f, and 17h. (20) Experies a second second

⁽²⁹⁾ For examples of other synthetic routes to 1,3,4-oxadiazoles, see: (a) Golfier, M.; Milcent, R. Synthesis 1979, 946-948. (b) Pochat, F. Synthesis 1984, 146-148. (c) Rigo, B.; Cauliez, P.; Fasseur, D.; Couturier, D. Synth. Commun. 1986, 16, 1665-1669. (d) El-Abadelah, M. M.; Nazer, M. Z.; Hussein, A. Q.; Awadallah, A. M. J. Heterocycl. Chem. 1991, 28, 1229-1234. (e) Reynaud, P.; El Hamad, Y.; Davrinche, C.; Nguyen-Tri-Xuong, E.; Tran, G.; Rinjard, P. J. Heterocycl. Chem. 1992, 29, 991-993. (f) Jedlovská, E.; Leško, J. Synth. Commun. 1994, 24, 1879-1885. See also refs 6d, 6f, 6j, and 17h.

^a (a) EtOCOCl, Et₃N, THF, -5 °C; (b) EtOOCC(NH)NHNH₂ (10), THF, rt; (c) xylenes, Δ .

oxadiazole derivatives as calculated from the protected amino acids were 6-30%.

1,2,4-Triazoles³⁰ are generated by an intramolecular condensation of acylamidrazones.³¹ The required acylamidrazones were formed by treatment of mixed anhydrides of the Boc-L-amino acids with an amidrazonate (Scheme 3).^{32,33} The acylamidrazones were all solids, and some did precipitate in the reaction mixtures as they were soluble only in very polar solvents. Purified acylamidrazones were obtained in good yields (67–86%). The cyclizations³⁴ were performed at temperatures above the melting points of the acylamidrazones (180–200 °C) in xylenes (mixture of isomers). The use of crude acylamidrazones in the cyclization did not affect the overall yields calculated from the protected amino acids (13–52%).

Structural Aspects of the 1,2,4-Triazoles. The structure of 1,2,4-triazole 6f was analyzed by X-ray crystallography³⁵ (Figure 1a) which confirmed the absolute configuration. As expected, the stereochemistry was retained during the reaction sequence resulting in the R configuration. In the crystal of 6f, an extensive hydrogenbonding pattern forms antiparallel strands of molecules packed in almost perpendicular layers (Figure 1b). Each molecule donates hydrogen bonds via N-1-H and the carbamate N-H and accepts hydrogen bonds to N-2, N-4, and the carbonyl oxygen (Figure 1b). It is noteworthy

(32) For examples of 1,2,4-triazole-3-carboxylic acid esters derived from ethyl oxamidrazonate and an acid chloride or an anhydride, see: (a) Un, R. Chim. Acta Turc. **1974**, 2, 115-129. (b) Dost, J.; Stein, J.; Heschel, M. Z. Chem. **1986**, 26, 203-204. (c) Dost, J.; Heschel, M.; Stein, J. J. Prakt. Chem. **1986**, 328, 551-557. (d) Heschel, H.; Stein, J.; Dost, J. Wiss. Z. Paedagog. Hochsch. "Karl Liebknecht" Potsdam **1987**, 31, 45-52.

J. Heterocycl. Chem. 1988, 25, 651-654. See also ref 19b.
(34) Francis, J. E.; Gorczyca, L. A.; Mazzenga, G. C.; Meckler, H.
Tetrahedron Lett. 1987, 28, 5133-5136.
(35) Crystallographic data including the fractional atomic coordi-

that only one triazole tautomer was observed in the crystal of **6f**. Also, ¹³C NMR spectra of **6f** and **7f** indicated only one tautomeric form since signals due to C-3 and C-5 appeared as sharp peaks. This is in contrast with ¹³C NMR spectra of **2f**-**5f** in which C-3 and C-5 appeared as broad peaks of low intensity or were not visible, indicating the presence of several tautomeric forms in equilibrium. These results may indicate that hydrogen bonding is less favored in **2f**-**5f** than in **6f** and **7f**.

Stereochemical Aspects. The enantiomeric excess (% ee) of the dipeptidomimetics was determined by analysis of the purified and characterized derivatives on chiral stationary phases³⁶ using a straight phase HPLC system. Data from the HPLC analyses are listed in Table 1. For the Phe-Gly analogues, **2a**, **2d**, and **2f**, the retention times for both the L- and the D-enantiomer were determined. In the cases where the retention time is determined only for the L-enantiomer, the % ee was estimated by assuming a similar separation factor and detection limit as in chromatograms of **2a**, **2d**, and **2f** (Figure 2).

Racemization of the stereogenic center of the 1,2,4oxadiazole derivatives might occur either during the generation of the symmetrical anhydride with N,N'dicyclohexylcarbodiimide (DCC) or during the cyclization. Two compounds, 2a and 4a, were racemized,³⁷ which allowed for an unambiguous determination of the stereochemical purity of L-2a and L-4a (93 and >95% ee, respectively). The % ee of the cysteine derivative 5a could not be determined since we were unable to obtain reproducible chromatograms. The chromatogram of 6a showed two peaks in a 6:1 relationship. In contrast, chromatograms of 7a and 9a showed only one peak each. indicating high enantiopurity. As mentioned above, 8a was synthesized from two differently activated Boc-L-Asp(Bn) derivatives. When the chromatograms from the two syntheses were compared, it was apparent that the symmetrical anhydride gave a significantly higher % ee (>95%) than the nitrophenyl ester (20\% ee). This confirms that different modes of activation in the synthesis of 1,2,4-oxadiazoles result in different enantiopurities.

Racemization of the stereogenic center of the 1,3,4oxadiazoles might occur during the cyclization. We were, however, unable to racemize these compounds. Several different conditions were tried, e.g., tetrabutylammonium fluoride in THF, BuLi in THF, and NaOEt in EtOH at room temperature. Either no racemization occurred (tetrabutylammonium fluoride) or the 1,3,4-oxadiazole ring decomposed (BuLi and NaOEt). Racemic **2d** was

⁽³⁰⁾ Polya, J. B. In *Comprehensive Heterocyclic Chemistry*; Potts, K. T., Ed.; Pergamon Press: Oxford, 1984; Vol. 5, part 4A, pp 733-790.

⁽³¹⁾ For reviews about amidrazones, see: (a) Watson, K. M.; Neilson, D. G. In *The Chemistry of Amidines and Imidates* (The Chemistry of Functional Groups); Patai, S., Ed.; John Wiley & Sons: New York, 1975; pp 491-544. (b) Neilson, D. G.; Roger, R.; Heatlie, J. W. M.; Newlands, L. R. Chem. Rev. 1970, 70, 151-170.
(32) For examples of 1,2,4-triazole-3-carboxylic acid esters derived

⁽³³⁾ For examples of other routes providing 1,2,4-triazole-3-carboxylic acid esters, see: (a) Reimlinger, H.; Lingier, W. R. F.; Vandewalle, J. J. M. Chem. Ber. 1971, 104, 639-644. (b) Oliver, J. E.; Sonnet, P. E. J. Org. Chem. 1973, 38, 1437-1438. (c) Ito, Y.; Nii, Y.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1979, 2521-2524. (d) Poonian, M. S.; Nowoswiat, E. F. J. Org. Chem. 1980, 45, 203-208. (e) Schmidt, R. R.; Heermann, D. Chem. Ber. 1981, 114, 2825-2833. (f) Vaněk, T.; Velková, V.; Gut, J. Collect. Czech. Chem. Commun. 1984, 49, 2492-2495. (g) Vemishetti, P.; Leiby, R. W.; Abushanab, E.; Panzica, R. P. J. Heterocycl. Chem. 1988, 25, 651-654. See also ref 19b.

⁽³⁵⁾ Crystallographic data including the fractional atomic coordinates, referring to the 6(R) enantiomer, together with distances and angles of covalent bonds and of possible hydrogen bonds for **6f** have been deposited with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U.K. Lists of the atomic displacement parameters and final F_{obs}/F_{calc} values are available directly from the authors (I.C.).

⁽³⁶⁾ The samples were dissolved either in the mobile phase or in EtOH. Samples dissolved in the mobile phase had to be fresh when injected since the use of old sample solutions did not give reproducable chromatograms. For compounds 2a-9a and 2d-7d, the samples were dissolved in the mobile phase. The analyses were run on a Chiracel OD-H column obtained from J. T. Baker, Holland. Hexane/2-propanol/Et₂NH (80:20:0.2, 90:10:0.1, or 95:5:0.1) at a flow rate of 0.5 mL/min were used as mobile phases. The detection wavelength was 254 nm. For compound 2f-7f, the samples were dissolved in EtOH. The analyses were run on a Chiralpak AD column at J. T. Baker, Holland. Hexane/2-propanol/Et₂NH (90:10:0.1 or 80:20:0.1) at flow rates of 0.5 or 1 mL/min were used as mobile phases. The detection wavelength was 225 nm.

⁽³⁷⁾ The procedure for racemization of 1,2,4-oxadiazole derivatives is as follows: 1 equiv of the ethyl 1,2,4-oxadiazole-3-carboxylate and 2 equiv of 1 M tetrabutylammonium fluoride in THF were stirred at room temperature for 2 h. The solvent was stripped. The residue was dissolved in Et₂O and washed with water. The organic layer was dried (MgSO₄), filtered, and concentrated. The residue was redissolved in EtOAc/pentane (1:1) and filtered through a Pasteur pipet with silica.

Figure 1. (a) Perspective view of 6f with crystallographic labeling of the atoms. (b) Stereoscopic view of the crystal packing of 6f.

therefore synthesized from Boc-DL-Phe, and the enantiopurity of L-2d was established to be >95% ee.

As with 1,2,4-oxadiazole 5a, it was impossible to determine the % ee for the cysteine derivative 5d since we did not obtain reproducible chromatograms. Also, the % ee for 6d was impossible to determine. In the chromatograms of the other 1,3,4-oxadiazole derivatives, the enantiomers had different retention times and the % ee for the compounds varied between 90 and 95%.

None of the 1,2,4-triazole derivatives could be racemized. Several conditions were tried, e.g., tetrabutylammonium fluoride in THF, LiH in THF, and NaOEt in EtOH at room temperature, but no racemization occurred. Racemic **2f** was synthesized from Boc-DL-Phe, and the % ee of L-**2f** was found to be >95%. To be able to chromatographically analyze the 1,2,4-triazole derivatives, a different stationary phase was used (Chiralpak AD). Also here, the % ee of the cysteine derivative **5f** was impossible to determine. All other compounds showed chromatograms indicating high enantiopurities (>95% ee).

Conclusions

The compounds synthesized in this study represent a novel class of dipeptidomimetics useful as building blocks which can replace amino acid-Gly moieties in modified peptides. The reactions producing 1,2,4-oxadiazoles, 1,3,4-oxadiazoles, and 1,2,4-triazoles are versatile and can be performed starting from most of the natural amino acids. Although overall yields of the dipeptidomimetics are moderate to low, the synthetic sequences are short and facile. In addition, the chirality of the starting material is retained during the cyclization reactions. The reaction conditions used are compatible with Boc protection of the amino acids, but the use of other protecting groups may require modifications of the reaction conditions. We are presently synthesizing modified peptides containing the mimetic structures presented herein to evaluate their biological significance.

Experimental Section

General. Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded at 270 and 67.5 MHz with tetramethylsilane as internal standard. Optical rotations were measured at ambient temperature in a 10 cm cell, and c is expressed in g/100 mL. Thin layer chromatography (TLC) was carried out on aluminum sheets precoated with silica gel 60 F_{254} (0.2 mm, E. Merck); the spots were visualized with UV detection and by spraving with a 2% EtOH solution of ninhydrin, followed by heating. Column chromatography was performed on silica using Kieselgel 60 (230-400 mesh, E. Merck). The elemental analyses were performed by MikroKemi AB, Uppsala, Sweden, and Analytische Laboratorien, Gummersbach, Germany. Solvents were in some cases dried prior to use. THF and Et2O were distilled from sodium/benzophenone, and CH₂Cl₂ was dried over MgSO₄. Ethyl 2-amino-2-(hydroxyimino)acetate³⁸ (1) and ethyl oxamidrazonate³⁹ (10) were prepared according to known procedures. Data on elemental analyses, optical rotations, and melting points of 2a-9a, 2d-7d, and 2f-7f are listed in Table 1. In the ¹³C spectra of 2f-7f, weak signals are noted w.

⁽³⁸⁾ Ungnande, H. E.; Kissinger, L. W. J. Org. Chem. 1958, 23, 1794-1796.

^{(39) (}a) Schmidt, P.; Druey, J. Helv. Chim. Acta **1955**, 38, 1560– 1564. (b) Rätz, R.; Schroeder, H. J. Org. Chem. **1958**, 23, 1931–1934.

Figure 2. Enantiopurities of (a) **2a**, (b) **2d**, and (c) **2f** determined by HPLC on a chiral stationary phase and compared with the corresponding racemates (right). See Table 1 and ref 36 for the experimental conditions.

General Procedure for the Synthesis of Ethyl 1,2,4-Oxadiazole-3-carboxylate Derivatives 2a-9a. The symmetrical anhydride of the tert-butyloxycarbonyl-(Boc) protected L-amino acid was prepared by addition of N, N'-dicyclohexylcarbodiimide (DCC) to a solution of the Boc-L-amino acid in dry CH₂Cl₂. The mixture was stirred at 0 °C for 1 h. The resulting N,N'-dicyclohexylurea (DCU) was filtered off, and the filtrate was concentrated. The residue was redissolved in pyridine, and a solution of 1 in pyridine was added dropwise. The mixture was heated to reflux. The reaction was monitored by TLC (pentane/EtOAc, 3:2). When the reaction was complete, water was added and the solvent was evaporated. The residue was partitioned between CH₂Cl₂ and water. The organic layer was washed with saturated aqueous NaHCO₃, aqueous HCl (pH = 2), brine, and water, dried (MgSO₄), filtered, and concentrated. The residue was purified as indicated.

Ethyl 5-[(S)-1-[(tert-Butyloxycarbonyl)amino]-2-phenylethyl]-1,2,4-oxadiazole-3-carboxylate (2a). The symmetrical anhydride was formed from Boc-L-phenylalanine (614 mg, 2.32 mmol) and DCC (239 mg, 1.16 mmol). A mixture of 1 (102 mg, 0.77 mmol) and the crude anhydride in pyridine was refluxed for 2 h. Purification by column chromatography (pentane/EtOAc, 8.5:1.5) afforded 200 mg (72%) of pure 2a: ¹H NMR (CDCl₃) δ 7.30–7.00 (m, 5H), 5.39 (m, 1H), 5.17 (br d, 1H), 4.51 (q, J = 7.2 Hz, 2H), 3.27 (AB system, 2H), 1.44 (t, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃) δ 180.9, 161.8, 157.5, 154.7, 134.6, 129.2, 128.9, 127.6, 80.8, 63.2, 49.5, 39.9, 28.2, 14.1.

Ethyl 5-[[(tert-Butyloxycarbonyl)amino]methyl]-1,2,4oxadiazole-3-carboxylate (3a). The symmetrical anhydride was formed from Boc-glycine (199 mg, 1.13 mmol) and DCC (117 mg, 0.57 mmol). A mixture of 1 (50 mg, 0.38 mmol) and the crude anhydride in pyridine was refluxed for 1.5 h. Purification by column chromatography (Et₂O/hexane, 1:1) afforded 65 mg (63%) of pure **3a**: ¹H NMR (CDCl₃) δ 5.34 (m, 1H), 4.67 (br d, 2H), 4.51 (q, J = 7.1 Hz, 2H), 1.46 (s, 9H), 1.45 (t, 3H); ¹³C NMR (CDCl₃) δ 178.6, 161.9, 157.4, 155.3, 81.0, 63.2, 37.2, 28.2, 14.1.

Ethyl 5-[(S)-1-[(*tert*-Butyloxycarbonyl)amino]ethyl]-1,2,4-oxadiazole-3-carboxylate (4a). The symmetrical anhydride was formed from Boc-L-alanine (379 mg, 2.00 mmol) and DCC (206 mg, 1.00 mmol). A mixture of 1 (50 mg, 0.38 mmol) and the crude anhydride in pyridine was refluxed for 1.5 h. Purification by column chromatography (pentane/ EtOAc, 8.5:1.5) afforded 82.6 mg (76%) of pure 4a: ¹H NMR (CDCl₃) δ 5.20 (m, 2H), 4.48 (q, J = 7.1 Hz, 2H), 1.59 (d, J =7.0 Hz, 3H), 1.41 (s, 9H), 1.40 (t, 3H); ¹³C NMR (CDCl₃) δ 182.1, 161.8, 157.5, 154.6, 80.7, 63.0, 44.2, 28.2, 19.8, 14.0.

Ethyl 5-[(R)-2-(Benzylthio)-1-[(tert-butyloxycarbonyl)amino]ethyl]-1,2,4-oxadiazole-3-carboxylate (5a). The symmetrical anhydride was formed from Boc-L-cysteine(Bn) (353 mg, 1.13 mmol) and DCC (117 mg, 0.57 mmol). A mixture of 1 (50 mg, 0.38 mmol) and the crude anhydride in pyridine was refluxed for 1.5 h. After addition of water to the pyridine solution, the mixture was kept in the refrigerator. The precipitate was filtered off to afford 125 mg (81%) of pure 5a: ¹H NMR (CDCl₃) δ 7.35–7.25 (m, 5H), 5.39 (br d, 1H), 5.29 (m, 1H), 4.51 (q, J = 6.9 Hz, 2H), 3.68 (s, 2H), 2.97 (d, J = 6.0Hz, 2H), 1.45 (t, 3H), 1.44 (s, 9H); ¹³C NMR (CDCl₃) δ 180.2, 161.8, 157.4, 154.7, 137.0, 128.9, 128.7, 127.5, 81.0, 63.2, 48.0, 36.5, 34.7, 28.2, 14.1.

Ethyl 5-[(S)-2-(Benzyloxy)-1-[(tert-butyloxycarbonyl)amino]ethyl]-1,2,4-oxadiazole-3-carboxylate (6a). The symmetrical anhydride was formed from Boc-L-serine(Bn) (591 mg, 2.00 mmol) and DCC (206 mg, 1.00 mmol). A mixture of 1 (50 mg, 0.38 mmol) and the crude anhydride in pyridine was refluxed for 2 h. Purification by column chromatography (pentane/EtOAc, 8.5:1.5) afforded 80 mg (54%) of pure **6a** as an oil: ¹H NMR (CDCl₃) δ 7.32–7.18 (m, 5H), 5.59 (br d, 1H), 5.29 (m, 1H), 4.51 (q, J = 7.1 Hz, 2H), 4.49 (s, 2H), 3.95 (dd, J= -9.5, 3.4 Hz, 1H), 3.83 (dd, J = 4.0 Hz, 1H), 1.44 (s, 9H), 1.43 (t, 3H); ¹³C NMR (CDCl₃) δ 179.9, 161.8, 157.4, 155.0, 136.8, 128.5, 128.0, 127.6, 80.8, 73.4, 70.0, 63.0, 49.2, 28.2, 14.0.

Ethyl 5-[(S)-1-(*tert*-Butyloxycarbonyl)pyrrolidin-2-yl]-1,2,4-oxadiazole-3-carboxylate (7a). The symmetrical anhydride was formed from Boc-L-proline (429 mg, 1.99 mmol) and DCC (206 mg, 1.00 mmol). A mixture of 1 (50 mg, 0.38 mmol) and the crude anhydride in pyridine was refluxed for 3 h. Purification by column chromatography (pentane/EtOAc, 3:1) afforded 44 mg (38%) of pure 7a as an oil. ¹H NMR (CDCl₃) rotamers δ 5.15 (m, 1H), 4.55 (m, 2H), 3.75–3.40 (m, 2H), 2.50–1.90 (m, 4H), 1.44–1.27 (m, 12H); ¹³C NMR (CDCl₃) rotamers δ 182.4, 182.1, 161.8, 157.5, 154.1, 153.2, 80.7, 80.5, 63.0, 62.9, 53.8, 53.7, 46.6, 46.3, 32.5, 31.5, 28.2, 28.0, 24.3, 23.6, 14.0; MS m/z 312.16 (MH⁺); mass calcd for C₁₄H₂₁N₃O₅ 311.34.

Ethyl 5-[(S)-2-(Benzyloxycarbonyl)-1-[(tert-butyloxycarbonyl)amino]ethyl]-1,2,4-oxadiazole-3-carboxylate (8a). Method A. The symmetrical anhydride was formed from Boc-L-aspartate(Bn) (734 mg, 2.27 mmol) and DCC (234 mg, 1.14 mmol). A mixture of 1 (100 mg, 0.78 mmol) and the crude anhydride in pyridine was refluxed for 1 h. After addition of water to the pyridine solution, the mixture was kept in the refrigerator. The precipitate was filtered off to afford 208 mg (66%) of pure 8a.

Method B. A mixture of 1 (50 mg, 0.38 mmol) and Boc-Laspartate(Bn)-ONp (33.6 mg, 0.76 mmol) in pyridine was refluxed for 3 h. Purification by column chromatography (pentane/EtOAc, 8.5:1.5) afforded 92 mg (58%) of pure **8a**: ¹H NMR (CDCl₃) δ 7.40-7.25 (m, 5H), 5.73 (br d, 1H), 5.43 (m, 1H), 5.11 (AB system, 2H), 4.50 (q, J = 7.0 Hz, 2H), 3.31 (dd, J = -17.5, 4.5 Hz, 1H), 3.10 (dd, J = 5.0 Hz, 1H), 1.46 (s, 9H), 1.44 (t, 3H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 180.2, 169.9, 161.9, 157.4, 154.8, 135.0, 128.7, 128.6, 128.5, 81.1, 67.2, 63.1, 45.3, 37.7, 28.2, 14.1.

Ethyl 5-[(S)-4-[1,3-Bis(tert-butyloxycarbonyl)-1-guanidino]-1-[(tert-butyloxycarbonyl)amino]butyl]-1,2,4-oxadiazole-3-carboxylate (9a). The symmetrical anhydride was formed from (Boc)₃-L-arginine (30 mg, 0.73 mmol) and DCC (80 mg, 0.38 mmol). A mixture of 1 (53 mg, 0.40 mmol) and the crude anhydride in pyridine was refluxed for 4 h. Purification by column chromatography (pentane/EtOAc, 4:1) afforded 40 mg (20%) of pure 9a: ¹H NMR (CDCl₃) δ 9.2 (br, 2H), 6.29 (br d, 1H), 5.15 (m, 1H), 4.50 (q, J = 7.2 Hz, 2H), 4.21-3.56 (m, 2H), 2.18-1.67 (m, 4H), 1.52-1.40 (m, 30H); ¹SC NMR (CDCl₃) δ 181.8, 163.3, 161.8, 160.6, 157.6, 155.2, 154.8, 84.0, 80.2, 79.1, 63.0, 48.6, 43.8, 29.0, 28.3, 28.1, 28.0, 24.8, 14.1.

General Procedure for the Synthesis of Boc-Protected L-Amino Acid Hydrazides 2b-7b. DCC, 4-(dimethylamino)pyridine (DMAP), and EtOH were added to a solution of the Boc-L-amino acid in dry Et₂O. The mixture was stirred at room temperature, and the reaction was followed by TLC (Et₂O/pentane, 1:1). The resulting DCU was filtered off. The filtrate was extracted with 1 M NaHSO₄, saturated aqueous NaHCO₃, and water, dried (MgSO₄), filtered, and concentrated. The residue was redissolved in EtOH and treated with hydrazine hydrate. The mixture was stirred at room temperature, and the reaction was followed by TLC (CHCl₃/MeOH, 9:1). The hydrazide was, if possible, isolated and characterized. Otherwise, it was used without further purification.

[(S)-2-[(tert-Butyloxycarbonyl)amino]-3-phenylpropanoyl]hydrazine (2b).⁴⁰ A solution of Boc-L-phenylalanine methyl ester (14 g, 0.05 mol) in MeOH was treated with hydrazine hydrate (7.3 mL, 0.15 mol). After stirring for 18 h, the mixture was kept in the refrigerator for 1 h. The product precipitated, and filtration afforded 11.5 g (82%) of pure **3b**: mp 120-122 °C; $[\alpha]_D$ +9.7 (c 1.01, MeOH); ¹H NMR (CDCl₃) δ 7.70 (br s, 1H), 7.30-7.15 (m, 5H), 5.32 (br d, 1H), 4.36 (dd, 1H), 3.81 (br s, 2H), 3.02 (AB system, 2H), 1.39 (s, 9H); ¹³C NMR (CDCl₃) δ 171.9, 155.2, 136.4, 129.2, 128.8, 127.1, 80.5, 54.8, 38.4, 28.3. Anal. Calcd for C₁₄H₂₁N₃O₃: C, 60.2; H, 7.6; N, 15.0.

[2-[(tert-Butyloxycarbonyl)amino]acetyl]hydrazine (3b).⁴¹ A mixture of Boc-glycine (500 mg, 2.85 mmol), DCC (648 mg, 3.14 mmol), DMAP (34.9 mg, 0.28 mmol), and EtOH (366 μ L, 6.28 mmol) was stirred for 70 min. The crude ethyl ester was treated with hydrazine hydrate (416 μ L, 8.56 mmol) for 36 h. The solvent was evaporated. Recrystallization (EtOAc/pentane) of the residue provided 312 mg (58%) of pure **3b**: mp 115–116 °C; ¹H NMR (CDCl₃) δ 7.96 (br s, 1H), 5.48 (br s, 1H), 3.92 (br s, 2H), 3.81 (d, 2H), 1.45 (s, 9H); ¹³C NMR (CDCl₃) δ 170.4, 156.2, 80.5, 43.0, 28.3. Anal. Calcd for Cr_{H15}N₃O₃: C, 44.4; H, 8.0; N, 22.2. Found: C, 44.6; H, 7.9; N, 22.6.

[(S)-2-[(tert-Butyloxycarbonyl)amino]propanoyl]hydrazine (4b).⁴² A mixture of Boc-L-alanine (500 mg, 2.64 mmol), DCC (600 mg, 2.91 mmol), DMAP (32.3 mg, 0.26 mmol), and EtOH (338 μ L, 5.82 mmol) was stirred for 70 min. The crude ethyl ester was treated with hydrazine hydrate (385 μ L, 7.93 mmol) for 36 h. The solvent was evaporated. Recrystallization (EtOAc/pentane) of the residue provided 312 mg (51%) of pure 4b: mp 95.5-96.5 °C; $[\alpha]_D - 25.4$ (c 1.01, MeOH); ¹H NMR (CDCl₃) δ 7.99 (br s, 1H), 5.25 (br d, 1H), 4.19 (app quin, 1H), 3.93 (br s, 2H), 1.44 (s, 9H), 1.36 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃) δ 173.6, 155.5, 80.3, 48.8, 28.3, 18.4. Anal. Calcd for C₈H₁₇N₃O₃: C, 47.3; H, 8.4; N, 20.7. Found: C, 47.6; H, 8.3; N, 21.0.

[(R)-3-(Benzylthio)-2-[(tert-butyloxycarbonyl)amino]propanoyl]hydrazine (5b). A mixture of Boc-L-cysteine(Bn) (500 mg, 1.60 mmol), DCC (364 mg, 1.77 mmol), DMAP (19.6 mg, 0.16 mmol), and EtOH (103 μ L, 1.77 mmol) was stirred for 50 min. The crude ethyl ester was treated with hydrazine hydrate (234 μ L, 4.82 mmol) for 19 h and was then kept in the refrigerator. The product precipitated, and filtration afforded 338 mg (65%) of pure **5b**: mp 109–110 °C; [α]_D -4.7 (c 0.98, MeOH); ¹H NMR (CDCl₃) δ 7.78 (br s, 1H), 7.35–7.25 (m, 5H), 5.36 (app d, 1H), 4.22 (dd, 1H), 3.90 (br s, 2H), 3.72 (s, 2H), 2.79 (AB system, 2H), 1.44 (s, 9H); ¹³C NMR (CDCl₃) δ 171.6, 155.6, 138.1, 129.3, 128.9, 127.6, 80.8, 53.0, 36.8, 33.9, 28.6. Anal. Calcd for C₁₅H₂₃N₃O₃S: C, 55.4; H, 7.1; N, 12.9. Found: C, 55.7; H, 7.0; N, 12.6.

[(S)-3-(Benzyloxy)-2-[(tert-butyloxycarbonyl)amino]propanoyl]hydrazine (6b). A mixture of Boc-L-serine(Bn) (500 mg, 1.62 mmol), DCC (385 mg, 1.85 mmol), DMAP (20 mg, 0.17 mmol), and EtOH (125 μ L, 1.85 mmol) was stirred for 2 h. The crude ethyl ester was treated with hydrazine hydrate (240 μ L, 4.93 mmol) for 20 h. The residue was used in the next step without further purification.

[(S)-1-(tert-Butyloxycarbonyl)-2-pyrrolidinoyl]hydrazine (7b). Ethyl chloroformate (312 μ L, 3.25 mmol) was added to a solution of Boc-L-proline (700 mg, 3.25 mmol) and Et₃N (453 μ L, 3.25 mmol) in dry THF. The mixture was stirred at -15 °C for 30 min. The resulting triethylammonium hydrochloride was filtered off, and the filtrate was added to hydrazine hydrate (316 μ L, 6.50 mmol) in THF. The mixture was stirred at room temperature for 2 h. The solvent was evaporated, and the residue was used in the next step without further purification.

General Procedure for the Synthesis of Diacylhydrazides 2c-7c. The reaction was carried out in dry THF under a nitrogen atmosphere. Ethyl oxalyl chloride was added to a chilled $(-30 \,^{\circ}\text{C})$ mixture of the Boc-L-amino acid hydrazide and Et₃N in THF. The mixture was gradually warmed to room temperature and was then kept at ambient temperature. The reaction was followed by TLC (CHCl₃/MeOH, 9:1). The resulting triethylammonium hydrochloride was filtered off, and the filtrate was concentrated. The residue was partitioned between Et₂O and water. The organic layer was extracted with saturated aqueous NaHCO₃ and 1 M NaHSO₄, dried (MgSO₄), filtered, and concentrated. The residue was purified as indicated or used in the next reaction step without further purification.

1-(Ethoxyoxalyl)-2-[(S)-2-[(*tert*-butyloxycarbonyl)amino]-3-phenylpropanoyl]hydrazine (2c). A mixture of ethyl oxalyl chloride (624 μ L, 5.58 mmol), 2b (1.30 g, 4.65 mmol), and Et₃N (777 μ L, 5.58 mmol) was stirred for 20 h. Crystallization of the residue in Et₂O/hexane provided 1.06 g (60%) of pure 2c: mp 88-89 °C; [α]_D -21.7 (c 1.01, MeOH); ¹H NMR (CDCl₃) δ 9.20 (br s, 2H), 7.35-7.20 (m, 5H), 5.07 (br d, 1H), 4.51 (m, 1H), 4.37 (q, J = 7.0 Hz, 2H), 3.18 (dd, 1H), 3.05 (dd, J = -14.0, 6.0 Hz, 1H), 1.39 (s, 9H), 1.38 (t, 3H); ¹³C NMR (CDCl₃) δ 169.0, 158.7, 155.7, 152.9, 136.0, 129.3, 128.7, 127.1, 80.8, 65.6, 54.3, 37.9, 28.3, 13.9. Anal. Calcd for C₁₈H₂₆N₃O₆: C, 57.0; H, 6.6; N, 11.1. Found: C, 56.6; H, 6.8; N, 11.0.

1-(Ethoxyoxalyl)-2-[2-[(*tert*-butyloxycarbonyl)amino]acetyl]hydrazine (3c). A mixture of ethyl oxalyl chloride (89 μ L, 0.79 mmol), 3b (100 mg, 0.53 mmol), and Et₃N (110 μ L, 0.79 mmol) was stirred for 20 h. Extraction and concentration of the organic layer afforded 128 mg (84%) of pure 3c: mp 124-125 °C; ¹H NMR (CDCl₃) δ 9.56 (br s, 2H), 5.63 (br s, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.95 (app bd, 2H), 1.44 (s, 9H), 1.37 (t, 3H); ¹³C NMR (CDCl₃) δ 168.1, 158.7, 156.3, 154.0, 80.5, 63.5, 42.8, 28.2, 13.8. Anal. Calcd for C₁₁H₁₉N₃O₆: C, 45.7; H, 6.6; N, 14.5. Found: C, 45.4; H, 6.8; N, 14.1.

1-(Ethoxyoxalyl)-2-[(S)-2-[(tert-butyloxycarbonyl)amino]propanoyl]hydrazine (4c). A mixture of ethyl oxalyl chloride (235 μ L, 2.10 mmol), 4b (407 mg, 2.00 mmol), and Et₃N (293 μ L, 2.10 mmol) was stirred for 3 h. The residue was redissolved in EtOAc and extracted with brine. The organic layer was dried (MgSO₄), filtered, and concentrated. The crude product was used in the next step without further purification.

1-(Ethoxyoxalyl)-2-[(R)-3-(benzylthio)-2-[(tert-butyloxycarbonyl)amino]propanoyl]hydrazine (5c). A mixture of ethyl oxalyl chloride (52 μ L, 0.41 mmol), 5b (100 mg, 0.31 mmol), and Et₃N (64.2 μ L, 0.41 mmol) was stirred for 5 h. Extraction and concentration of the organic layer afforded 100 mg (76%) of pure 5c: mp 63.5-65.5 °C; [α]_D -27.7 (c 0.84,

⁽⁴⁰⁾ Wieland, T.; Lewalter, J.; Birr, C. Liebigs Ann. Chem. 1970, 740, 31-47.

⁽⁴¹⁾ Bailey, W.; Griffith, J. R. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) **1964**, 5, 266–278.

⁽⁴²⁾ Tesser, G. I.; Nivard, R. J. F. Recl. Trav. Chim. Pays-Bas 1964, 83, 53-66.

 $\begin{array}{l} \label{eq:MeOH} \mbox{MeOH}; \ ^{1}\mbox{H}\ NMR\ (CDCl_3)\ \delta\ 9.49\ (br\ s,\ 2H),\ 7.35-7.25\ (m,\ 5H), \\ 5.44\ (br\ d,\ 1H),\ 4.30\ (m,\ 3H),\ 3.75\ (s,\ 2H),\ 2.84\ (br\ d,\ J=6.5\ Hz,\ 2H),\ 1.44\ (s,\ 9H),\ 1.36\ (t,\ 3H);\ ^{13}\ C\ NMR\ (CDCl_3)\ \delta\ 168.2, \\ 158.5,\ 155.5,\ 152.9,\ 137.6,\ 129.0,\ 128.6,\ 127.2,\ 80.9,\ 63.5,\ 52.4, \\ 36.4,\ 33.1,\ 28.2,\ 13.9.\ Anal.\ Calcd\ for\ C_{19}H_{27}N_3O_6S:\ C,\ 53.6; \\ H,\ 6.4;\ N,\ 9.9.\ Found:\ C,\ 53.2;\ H,\ 6.4;\ N,\ 9.3. \end{array}$

1-(Ethoxyoxalyl)-2-[(S)-3-(benzyloxy)-2-[(*tert*-butyloxycarbonyl)amino]propanoyl]hydrazine (6c). A mixture of ethyl oxalyl chloride (184 μ L, 1.65 mmol), crude 6b, and Et₃N (230 μ L, 1.65 mmol) was stirred for 3 h. The crude product was used in the next step without further purification.

1-(Ethoxyoxalyl)-2-[(S)-1-(tert-butyloxycarbonyl)pyrrolidinoyl]hydrazine (7c). A mixture of ethyl oxalyl chloride (389 μ L, 3.48 mmol), crude 7b, and Et₃N (485 μ L, 3.48 mmol) was stirred for 40 min. The crude product was used without further purification.

General Procedure for the Synthesis of Ethyl 1,3,4-Oxadiazole-2-carboxylate Derivatives $2d-7d.^{43}$ The first step of the ring closure was carried out in dry Et₂O under a nitrogen atmosphere. SOCl₂ was added to a chilled (0 °C) solution of the diacylhydrazide and pyridine in dry Et₂O. The mixture was stirred at 0 °C for 2 h. The resulting salt was filtered off, and the filtrate was concentrated in vacuo without heating. The residue was redissolved in toluene and the solution heated to reflux. The reaction was followed by TLC (CHCl₃/MeOH/hexane, 9:1:1). The solvent was evaporated and the residue purified by column chromatography.

Ethyl 5-[(S)-1-[(tert-Butyloxycarbonyl)amino]-2-phenylethyl]-1,3,4-oxadiazole-2-carboxylate (2d). A solution of 2c (1 g, 2.64 mmol), pyridine (550 μ L, 6.85 mmol), and SOCl₂ (250 μ L, 3.43 mmol) was stirred for 2 h. The residue was refluxed in toluene for 2 h. Purification by column chromatography (CH₂Cl₂/EtOAc, 19:1) afforded 593 mg (62%) of pure 2d: ¹H NMR (CDCl₃) δ 7.35–7.05 (m, 5H), 5.36 (m, 1H), 5.09 (br d, 1H), 4.51 (q, J = 7.2 Hz, 2H), 3.32 (dd, 1H), 3.22 (dd, 1H), 1.45 (t, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃) δ 168.5, 156.9, 154.6, 154.1, 134.7, 129.2, 128.8, 127.4, 80.8, 63.6, 48.6, 39.6, 28.2, 14.0.

Ethyl 5-[[(*tert*-Butyloxycarbonyl)amino]methyl]-1,3,4oxadiazole-2-carboxylate (3d). A solution of 3c (121 mg, 0.42 mmol), pyridine (101 μ L, 1.25 mmol), and SOCl₂ (46 μ L, 0.63 mmol) was stirred for 2 h. The residue was refluxed in toluene for 2 h. Purification by column chromatography (CH₂-Cl₂/EtOAc, 19:1) afforded 40 mg (35%) of pure 3d: ¹H NMR (CDCl₃) δ 5.18 (br s, 1H), 4.62 (app br d, 2H), 4.50 (q, J = 7.0 Hz, 2H), 1.44 (m, 12H); ¹³C NMR (CDCl₃) δ 166.2, 157.1, 155.3, 154.1, 80.8, 63.6, 36.0, 28.2, 14.0.

Ethyl 5-[(S)-1-[(*tert*-Butyloxycarbonyl)amino]ethyl]-1,3,4-oxadiazole-2-carboxylate (4d). A solution of crude 4c, pyridine (387 μ L, 4.79 mmol), and SOCl₂ (174 μ L, 2.40 mmol) was stirred for 2 h. The residue was refluxed in toluene for 12 h. Purification by column chromatography (pentane/EtOAc, 7:3) afforded 188 mg (33% overall yield in two steps) of pure 4d: ¹H NMR (CDCl₃) δ 5.18 (m, 2H), 4.55 (q, J = 7.2 Hz, 2H), 1.63 (d, J = 6.8 Hz, 3H), 1.45 (s, 9H), 1.44 (t, 3H); ¹³C NMR (CDCl₃) δ 169.7, 156.9, 154.7, 154.2, 80.7, 63.6, 43.4, 28.2, 19.7, 14.1.

Ethyl 5-[(*R*)-2-(Benzylthio)-1-[(*tert*-butyloxycarbonyl)amino]ethyl]-1,3,4-oxadiazole-2-carboxylate (5d). A solution of 5c (106 mg, 0.25 mmol), pyridine (44 μ L, 0.55 mmol), and SOCl₂ (20 μ L, 0.27 mmol) was stirred for 2 h. The residue was refluxed in toluene for 2 h. Purification by column chromatography (CH₂Cl₂/EtOAc, 97:3) afforded 12 mg (12%) of pure 5d: ¹H NMR (CDCl₃) δ 7.30–7.25 (m, 5H), 5.3 (br, 2H), 4.52 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 2H), 2.98 (m, 2H), 1.46 (m, 12H); ¹³C NMR (CDCl₃) δ 167.8, 157.0, 154.7, 154.1, 137.1, 129.0, 128.8, 127.4, 81.0, 63.6, 47.2, 36.6, 34.4, 28.2, 14.1.

Ethyl 5-[(S)-2-(Benzyloxy)-1-[(tert-butyloxycarbonyl)amino]ethyl]-1,3,4-oxadiazole-2-carboxylate (6d). A solution of half the amount of the crude 6c, pyridine (116 μ L, 1.44 mmol), and SOCl₂ (52 μ L, 0.72 mmol) was stirred for 2 h. The residue was refluxed in toluene for 8 h. Purification by column chromatography (pentane/EtOAc, 7:3) afforded 65 mg (20% overall yield in three steps) of pure **6d**: ¹H NMR (CDCl₃) δ 7.32–7.19 (m, 5H), 5.55 (br d, 1H), 5.26 (m, 1H), 4.55–4.47 (m, 4H), 3.94 (dd, J = -9.4, 3.8 Hz, 1H), 3.84 (dd, J = 3.8 Hz, 1H), 1.45 (s, 9H), 1.44 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 167.5, 157.0, 155.0, 154.1, 136.9, 128.5, 128.0, 127.7, 80.8, 73.4, 69.7, 63.5, 48.1, 28.2, 14.0.

Ethyl 5-[(S)-1-(*tert*-Butyloxycarbonyl)pyrrolidin-2-yl]-1,3,4-oxadiazole-2-carboxylate (7d). A solution of crude 7c, pyridine (787 μ L, 9.76 mmol), and SOCl₂ (354 μ L, 4.88 mmol) was stirred at 0 °C for 2 h. The residue was refluxed in toluene for 2 h. Purification by column chromatography (CH₂Cl₂/ EtOAc, 9:1 and Et₂O/pentane, 7:3) afforded 60 mg (6% overall yield in three steps) of pure 7d as an oil: ¹H NMR (CDCl₃)⁴⁴ rotamers δ 5.22–5.06 (m, 1H), 4.52 (app q, 2H), 3.70–3.40 (m, 2H), 2.49–1.92 (m, 4H), 1.45 (m, 7H), 1.33 (s, 5H); ¹³C NMR (CDCl₃)⁴⁴ rotamers δ 169.8, 156.6, 154.2, 153.4, 80.7, 80.5, 63.6, 63.4, 52.8, 46.6, 46.4, 32.0, 31.3, 28.3, 28.2, 24.3, 23.7, 14.0.

General Procedure for the Synthesis of Acylamidrazones 2e-7e. The Boc-protected L-amino acid was converted to a mixed anhydride by addition of ethyl chloroformate to a chilled solution $(-5 \,^{\circ}\text{C})$ of the amino acid and Et₃N in dry THF. The mixture was stirred at $-5 \,^{\circ}\text{C}$ for 30 min. The resulting triethylammonium hydrochloride was filtered off, and a solution of 10 in dry THF was added to the filtrate at room temperature. In the cases where the acylamidrazone precipitated during the reaction, the pure product was easily isolated by filtration. Those compounds were fully characterized. If the acylamidrazone did not precipitate, the crude product was used in the cyclization reaction without purification. ¹H and ¹³C NMR spectra showed that tautomeric mixtures were obtained in all the isolated compounds.

1-(Ethoxyoxalimidyl)-2-[(S)-2-[(tert-butyloxycarbonyl)amino]-3-phenylpropanoyl]hydrazine (2e). The mixed anhydride was formed from Boc-L-phenylalanine (111 mg, 0.42 mmol), Et₃N (48 μ L, 0.50 mmol), and ethyl chloroformate (70 μ L, 0.50 mmol). Compound 10 (46 mg, 0.35 mmol) was added to the filtrate, and the mixture was stirred for 5 h. Filtration of the reaction mixture afforded 106 mg (80%) of pure 2e: mp 176-178 °C (EtOH/pentane); $[\alpha]_D$ +105.7 (c 1.05, DMF); ¹H NMR (DMSO- d_6) δ 9.96 (br s, 0.5H), 9.84 (br s, 0.5H), 7.42-7.13 (m, 5H), 7.08 (br d, 0.5H), 6.94 (br d, 0.5H), 6.50 (br s, 2H), 4.86 (m, 0.5H), 4.37-4.17 (m, 2.5H), 3.07-2.54 (m, 2H), 1.29 (s, 9H), 1.38–1.24 (m, 3H); ¹³C NMR (DMSO-d₆) δ 173.3, 168.1, 162.2, 161.9, 155.6, 155.4, 139.6, 139.3, 137.9, 136.1, 129.2, 128.1, 127.9, 126.3, 126.2, 78.1, 77.8, 61.8, 61.6, 54.9, 54.2, 37.5, 35.9, 28.2, 14.1. Anal. Calcd for C₁₈H₂₆N₄O₅: C, 57.1; H, 6.9; N, 14.8. Found: C, 57.0; H, 6.9; N, 14.7.

1-(Ethoxyoxalimidyl)-2-[2-[(tert-butyloxycarbonyl)amino]acetyl]hydrazine (3e). The mixed anhydride was formed from Boc-glycine (146 mg, 0.83 mmol), Et₃N (139 μ L, 1.00 mmol), and ethyl chloroformate (96 μ L, 1.00 mmol). Compound 10 (91 mg, 0.69 mmol) was added to the filtrate, and the mixture was stirred for 3 h. After evaporation of the solvent, the crude acylamidrazone was used in the cyclization without further purification.

1-(Ethoxyoxalimidyl)-2-[(S)-2-[(*tert*-butyloxycarbonyl)amino]propanoyl]hydrazine (4e). The mixed anhydride was formed from Boc-L-alanine (128 mg, 0.68 mmol), Et₃N (113 μ L, 0.81 mmol), and ethyl chloroformate (78 μ L, 0.81 mmol). Compound 10 (74 mg, 0.56 mmol) was added to the filtrate, and the mixture was stirred for 18 h. Filtration of the reaction mixture afforded 146 mg (86%) of pure 4e: mp 183–184 °C; [α]_D +37.8 (c 0.98, DMF); ¹H NMR (DMSO-d₆) δ 9.84 (br s, 0.5H), 9.76 (br s, 0.5H), 6.94 (br d, 0.5H), 6.74 (br d, 0.5H), 6.44 (br d, 2H), 4.73 (m, 0.5H), 4.22 (q, J = 7.2 Hz, 2H), 4.04 (m, 0.5H), 1.37 (s, 9H), 1.26 (t, 3H), 1.20 (d, J = 7.1 Hz, 3H); ¹³C NMR (DMSO-d₆) δ 174.3, 169.3, 162.2, 161.7, 155.1, 139.5, 136.2, 78.0, 77.8, 61.6, 61.5, 48.8, 28.2, 18.1, 16.9, 14.0, 13.9.

⁽⁴³⁾ The yield did not decrease when the crude diacylhydrazines were used in the cyclization step, but it was important to have dry conditions and high-quality thionyl chloride and pyridine. The pyridinium salt resulting from formation of the oxathiadiazole S-oxide had to be carefully filtered off to improve the yield.

⁽⁴⁴⁾ According to the ¹H and ¹³C NMR spectra of the proline derivatives **7d** and **7f**, the *cis*-carbamate is the major isomer in the 1,3,4-oxadiazole derivative and the *trans*-carbamate is the major isomer in the 1,2,4-triazole derivative. For ¹H and ¹³C NMR on *cis*- and *trans*-isomers of L-proline derivatives, see: Luthman, K.; Hacksell, U. Acta Chem. Scand. **1993**, 47, 461-468.

Anal. Calcd for $C_{12}H_{22}N_4O_5$: C, 48.0; H, 6.9; N, 18.1. Found: C, 47.7; H, 7.3; N, 18.5.

1-(Ethoxyoxalimidyl)-2-[(R)-3-(benzylthio)-2-[(tertbutyloxycarbonyl)amino]propanoyl]hydrazine (5e). The mixed anhydride was formed from Boc-L-cysteine(Bn) (100 mg, 0.32 mmol), Et₃N (54 μ L, 0.38 mmol), and ethyl chloroformate (37 µL, 0.38 mmol). Compound 10 (35 mg, 0.27 mmol) was added to the filtrate, and the mixture was stirred for 22 h. Filtration of the reaction mixture afforded 85 mg (75%) of pure **5e**: mp 200-202 °C; $[\alpha]_D$ +19.0 (c 1.02, DMF); ¹H NMR $(DMSO-d_6) \delta 10.02$ (br s, 0.5H), 9.92 (br s, 0.5H), 7.32-7.20 (m, 5H), 7.04 (br d, 0.5H), 6.77 (br d, 0.5H), 6.52 (br d, 2H), 5.09 (m, 0.5H), 4.28-4.13 (m, 2.5H), 3.91-3.77 (m, 2H), 2.67-2.59 (m, 2H), 1.39 (s, 9H), 1.27 (t, J = 7.0 Hz, 1.5H), 1.23 (t, 1.5H); $^{13}{\rm C}$ NMR (DMSO- $d_6)$ δ 172.2, 166.9, 162.1, 161.7, 155.4, 155.2, 140.0, 138.7, 138.2, 136.5, 129.0, 128.8, 128.4, 128.3, 126.9, 126.8, 78.3, 78.0, 61.7, 52.9, 50.6, 35.2, 35.0, 33.0, 32.1, 28.2, 14.0, 13.8. Anal. Calcd for $C_{19}H_{28}N_4O_5S$: C, 53.8; H, 6.6; N, 13.2. Found: C, 53.8; H, 6.6; N, 13.2.

1-(Ethoxyoxalimidyl)-2-[(S)-3-(benzyloxy)-2-[(tertbutyloxycarbonyl)amino]propanoyl]hydrazine (6e). The mixed anhydride was formed from Boc-L-serine(Bn) (174 mg, 0.59 mmol), Et_3N (98 μ L, 0.70 mmol), and ethyl chloroformate (68 µL, 0.70 mmol). Compound 10 (59 mg, 0.45 mmol) was added to the filtrate, and the mixture was stirred for 7 h. Filtration of the reaction mixture afforded 124 mg (67%) of pure **6e**: mp 179–180 °C; $[\alpha]_D$ +26.2 (c 0.97, DMF); ¹H NMR (DMSO- d_6) δ 10.05 (br s, 1H), 7.31–7.13 (m, 5H), 6.88 (br d, 0.5H), 6.66 (br d, 0.5H), 6.52 (br d, 2H), 5.14 (m, 0.5H), 4.59-4.44 (m, 2H), 4.34 (m, 0.5H), 4.28-4.14 (m, 2H), 3.64 (br dd, 2H), 1.38 (s, 9H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (DMSO d_6) δ 171.2, 166.4, 162.1, 161.6, 155.3, 155.2, 139.8, 138.4, 138.0, 136.3, 128.2, 128.1, 127.5, 127.4, 78.3, 78.1, 72.1, 71.5, 69.7, 69.1, 61.6, 61.5, 53.3, 51.3, 28.2, 14.0, 13.9. Anal. Calcd for C₁₉H₂₈N₄O₆: C, 55.6; H, 7.1; N, 13.4. Found: C, 55.9; H, 6.9; N, 13.7.

1-(Ethoxyoxalimidyl)-2-[(S)-1-(*tert*-butyloxycarbonyl)-2-pyrrolidinoyl]hydrazine (7e). The mixed anhydride was formed from Boc-L-proline (157 mg, 0.73 mmol), Et₃N (122 μ L, 0.88 mmol), and ethyl chloroformate (84 μ L, 0.88 mmol). Compound 10 (80 mg, 0.61 mmol) was added to the filtrate, and the mixture was stirred for 7 h. After evaporation of the solvent, the crude acylamidrazone was used in the cyclization without further purification.

General Procedure for the Synthesis of Ethyl 1,2,4-Triazolecarboxylate Derivatives 2f-7f. The acylamidrazone was heated in xylenes (mixture of isomers) with a Dean-Stark apparatus, using a silicon oil bath. The oil bath temperature was kept above the melting point of the acylamidrazone.⁴⁵ The reaction was followed by TLC (CHCl₃/ MeOH/pentane, 9:1:1). When the reaction was complete, the solvent was evaporated and the residue purified by column chromatography.

Ethyl 5-[(\hat{S})-1-[(*tert*-Butyloxycarbonyl)amino]-2-phenylethyl]-1,2,4-triazole-3-carboxylate (2f). Compound 2e (318 mg, 0.84 mmol) was heated at an oil bath temperature of 190 °C for 6 h. Purification of the residue by column chromatography (pentane/EtOAc, 7:3) afforded 196 mg (65%) of pure 2f: ¹H NMR (CDCl₃) δ 13.0 (br, 1H), 7.60–7.00 (m, 5H), 5.76 (br d, 1H), 5.25 (app dd, 1H), 4.48 (q, J = 7.0 Hz, 2H), 3.26 (AB system, 2H), 1.41 (t, 3H), 1.34 (s, 9H); ¹³C NMR (CDCl₃) δ 159.6, 159.5 (w), 155.8, 153.9, 136.2, 129.2, 128.6, 127.0, 80.6, 62.2, 49.2, 40.3, 28.2, 14.2. Ethyl 5-[[(tert-Butyloxycarbonyl)amino]methyl]-1,2,4triazole-3-carboxylate (3f). Crude 3e was heated at an oil bath temperature of 180 °C for 3 h. Purification of the residue by column chromatography (EtOAc/pentane, 9:1) afforded 52 mg (28% overall yield in two steps) of pure 3f: ¹H NMR (CDCl₃) δ 13.5 (br, 1H), 5.9 (br, 1H), 4.55 (app d, 2H), 4.47 (q, J = 7.1 Hz, 2H), 1.40 (m, 12H); ¹³C NMR (CDCl₃) δ 160.5, 159.8, 156.5, 154.0 (w), 80.5, 62.1, 36.5, 28.2, 14.1.

Ethyl 5-[(S)-1-[(*tert*-Butyloxycarbonyl)amino]ethyl]-1,2,4-triazole-3-carboxylate (4f). Compound 4e (146 mg, 0.48 mmol) was heated at an oil bath temperature of 195 °C for 6 h. Purification of the residue by column chromatography (EtOAc/pentane, 7:3) afforded 62 mg (45%) of pure 4f: ¹H NMR (CDCl₃) δ 13.7 (br, 1H), 5.91 (br d, 1H), 5.13 (m, 1H), 4.47 (q, J = 6.8 Hz, 2H), 1.62 (d, J = 7.0 Hz, 3H), 1.40 (t, 3H), 1.38 (s, 9H); ¹³C NMR (CDCl₃) δ 160.5, 160.0, 155.6, 154.0 (w), 80.2, 62.1, 43.4, 28.2, 20.1, 14.1.

Ethyl 5-[(*R*)-2-(Benzylthio)-1-[(*tert*-butyloxycarbonyl)amino]ethyl]-1,2,4-triazole-3-carboxylate (5f). Compound 5e (91 mg, 0.21 mmol) was heated at an oil bath temperature of 195 °C for 4 h. Purification of the residue by column chromatography (EtOAc/pentane, 2:3) afforded 15 mg (17%) of pure 5f: ¹H NMR (CDCl₃) δ 12.6 (br, 1H), 7.28–7.20 (m, 5H), 5.65 (br d, 1H), 5.10 (dd, 1H), 4.48 (q, J = 7.1 Hz, 2H), 3.65 (s, 2H), 3.11–2.92 (AB system, 2H), 1.43 (s, 9H), 1.42 (t, 3H); ¹³C NMR (CDCl₃) δ 159.6, 159.5 (w), 155.7, 137.6, 128.9, 128.7, 127.3, 80.9, 62.3, 47.6, 36.5, 35.0, 28.3, 14.2.

Ethyl 5-[(R)-2-(Benzyloxy)-1-[(*tert***-butyloxycarbonyl)amino]ethyl]-1,2,4-triazole-3-carboxylate (6f).** Compound **6e** (113 mg, 0.28 mmol) was heated at an oil bath temperature of 190 °C for 5 h. Purification of the residue by column chromatography (EtOAc/pentane, 3:2) afforded 24 mg (22%) of pure **6f**: ¹H NMR (CDCl₃) δ 12.3 (br, 1H), 7.29–7.26 (m, 5H), 5.71 (bs, 1H), 5.16 (m, 1H), 4.52 (s, 2H), 4.47 (q, J = 7.2 Hz, 2H), 4.03–3.73 (m, 2H), 1.41 (m, 12H); ¹³C NMR (CDCl₃) δ 159.7, 158.2, 155.8, 153.7, 137.1, 128.8, 128.0, 127.8, 80.8, 73.5, 70.2, 62.1, 48.0, 28.2, 14.2.

Ethyl 5-[(S)-1-(*tert*-Butyloxycarbonyl)pyrrolidin-2-yl]-1,2,4-triazole-3-carboxylate (7f). The crude 7e was heated at an oil bath temperature of 190 °C for 4 h. Purification of the residue by column chromatography (EtOAc/pentane, 9:1) afforded 49 mg (26% yield in two steps) of pure 7f: ¹H NMR (CDCl₃)⁴⁴ rotamers δ 12.4 (br, 1H), 5.15–4.98 (m, 1H), 4.48 (q, J = 7.2 Hz, 2H), 3.66–3.35 (m, 2H), 2.94–2.79 (m, 1H), 2.49–1.89 (m, 3H), 1.48, 1.32 (2s, 9H), 1.42 (t, 3H); ¹³C NMR (CDCl₃)⁴⁴ rotamers δ 160.1, 159.4, 156.1, 153.7, 80.0, 61.8, 54.8, 52.6, 47.2, 46.8, 32.9, 28.8, 28.3, 24.6, 23.5, 14.2.

Acknowledgment. Financial support was obtained from the Swedish National Board for Industrial and Technical Development (NUTEK) and the Swedish Natural Science Research Council (NFR). We thank Eva Rämme for assistance in the synthetic work, Dr. Stefan Jönsson for help setting up the HPLC system, and Kerstin Wessman, Astra Draco AB, for the MS analysis.

Supplementary Material Available: Assignments of ¹H and ¹³C NMR signals of compounds described above, X-ray experimental data, and elemental analyses (calculated and found) of the compounds listed in Table 1 (14 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO942147C

⁽⁴⁵⁾ The fact that the reaction temperature had to be kept around 200 $\,^\circ\mathrm{C}$ may have decreased the yields because of decomposition reactions.